"""Module for the root mean squared error (RMSE) metric.Examples-------- .. doctest-requires:: numpy >>> import numpy as np >>> from viqa import RMSE >>> img_r = np.zeros((256, 256)) >>> img_m = np.ones((256, 256)) >>> rmse = RMSE() >>> rmse RMSE(score_val=None) >>> score = rmse.score(img_r, img_m) >>> score 1.0 >>> rmse.print_score() RMSE: 1.0 >>> img_r = np.zeros((256, 256)) >>> img_m = np.zeros((256, 256)) >>> rmse.score(img_r, img_m) 0.0 >>> img_r = np.random.rand(256, 256) >>> img_m = np.random.rand(128, 128) >>> rmse.score(img_r, img_m) Traceback (most recent call last): ... ValueError: Image shapes do not match"""# Authors# -------# Author: Lukas Behammer# Research Center Wels# University of Applied Sciences Upper Austria, 2023# CT Research Group## Modifications# -------------# Original code, 2024, Lukas Behammer## License# -------# BSD-3-Clause Licensefromwarningsimportwarnimportnumpyasnpfromskimage.metricsimportmean_squared_errorfromviqa._metricsimportFullReferenceMetricsInterface
[docs]classRMSE(FullReferenceMetricsInterface):"""Class to calculate the root mean squared error (RMSE) between two images. Attributes ---------- score_val : float RMSE score value of the last calculation. parameters : dict Dictionary containing the parameters for RMSE calculation. Parameters ---------- data_range : {1, 255, 65535}, optional Data range of the returned data in data loading. Can be omitted if ``normalize`` is False. Passed to :py:func:`viqa.utils.load_data`. normalize : bool, default False If True, the input images are normalized to the ``data_range`` argument. **kwargs : optional Additional parameters for data loading. The keyword arguments are passed to :py:func:`viqa.utils.load_data`. Other Parameters ---------------- chromatic : bool, default False If True, the input images are expected to be RGB images. If False, the input images are converted to grayscale images if necessary. """def__init__(self,data_range=None,normalize=False,**kwargs)->None:"""Construct method."""super().__init__(data_range=data_range,normalize=normalize,**kwargs)ifself.parameters["chromatic"]:self._name="RMSEc"else:self._name="RMSE"
[docs]defscore(self,img_r,img_m):"""Calculate the RMSE score between two images. Parameters ---------- img_r : np.ndarray or Tensor or str or os.PathLike Reference image to calculate score against. img_m : np.ndarray or Tensor or str or os.PathLike Distorted image to calculate score of. Returns ------- score_val : float RMSE score value. """img_r,img_m=self.load_images(img_r,img_m)# Calculate scorescore_val=np.sqrt(mean_squared_error(img_r,img_m))self.score_val=score_valreturnscore_val
[docs]defprint_score(self,decimals=2):"""Print the RMSE score value of the last calculation. Parameters ---------- decimals : int, default=2 Number of decimal places to print the score value. Warns ----- RuntimeWarning If :py:attr:`score_val` is not available. """ifself.score_valisnotNone:print("RMSE: {}".format(np.round(self.score_val,decimals)))else:warn("No score value for RMSE. Run score() first.",RuntimeWarning)