viqa.fr_metrics.rmse.RMSE¶
- class viqa.fr_metrics.rmse.RMSE(data_range=None, normalize=False, **kwargs)[source]¶
Class to calculate the root mean squared error (RMSE) between two images.
- score_val¶
RMSE score value of the last calculation.
- Type:
float
- parameters¶
Dictionary containing the parameters for RMSE calculation.
- Type:
dict
- Parameters:
data_range ({1, 255, 65535}, optional) – Data range of the returned data in data loading. Can be omitted if
normalize
is False. Passed toviqa.utils.load_data()
.normalize (bool, default False) – If True, the input images are normalized to the
data_range
argument.**kwargs (optional) – Additional parameters for data loading. The keyword arguments are passed to
viqa.utils.load_data()
.chromatic (bool, default False) – If True, the input images are expected to be RGB images. If False, the input images are converted to grayscale images if necessary.
- score(img_r, img_m)[source]¶
Calculate the RMSE score between two images.
- Parameters:
img_r (np.ndarray or Tensor or str or os.PathLike) – Reference image to calculate score against.
img_m (np.ndarray or Tensor or str or os.PathLike) – Distorted image to calculate score of.
- Returns:
score_val – RMSE score value.
- Return type:
float
- export_results(path, filename)¶
Export the score to a csv file.
- Parameters:
path (str) – The path where the csv file should be saved.
filename (str) – The name of the csv file.
Notes
The arguments get passed to
viqa.utils.export_results()
.
- load_images(img_r, img_m)¶
Load the images and perform checks.
- Parameters:
img_r (np.ndarray, viqa.ImageArray, torch.Tensor, str or os.PathLike) – The reference image.
img_m (np.ndarray, viqa.ImageArray, torch.Tensor, str or os.PathLike) – The modified image.
- Returns:
img_r (viqa.ImageArray) – The loaded reference image as an
viqa.utils.ImageArray
.img_m (viqa.ImageArray) – The loaded modified image as an
viqa.utils.ImageArray
.