Source code for viqa.nr_metrics.qmeasure

"""Module for the Q-Measure [1]_ metric.

References
----------
.. [1] Reiter, M., Weiß, D., Gusenbauer, C., Erler, M., Kuhn, C., Kasperl, S., &
    Kastner, J. (2014). Evaluation of a Histogram-based Image Quality Measure for X-ray
    computed Tomography. 5th Conference on Industrial Computed Tomography (iCT) 2014,
    25-28 February 2014, Wels, Austria. e-Journal of Nondestructive Testing Vol. 19(6).
    https://www.ndt.net/?id=15715

Examples
--------
    .. doctest-requires:: numpy

        >>> import numpy as np
        >>> from viqa import QMeasure
        >>> img = np.random.rand(256, 256)
        >>> qm = QMeasure()
        >>> qm
        QMeasure(score_val=None)
        >>> score = qm.score(img, hist_bins=128, num_peaks=2)
"""

# Authors
# -------
# Author: Lukas Behammer
# Research Center Wels
# University of Applied Sciences Upper Austria, 2023
# CT Research Group
#
# Modifications
# -------------
# Original code, 2024, Lukas Behammer

#
# License
# -------
# BSD-3-Clause License

from warnings import warn

import numpy as np

from viqa._metrics import NoReferenceMetricsInterface
from viqa.nr_metrics.qmeasure_utils import qmeasurecalc
from viqa.utils import _to_float


[docs] class QMeasure(NoReferenceMetricsInterface): """Class to calculate the Q-Measure [1]_ for an image. Attributes ---------- score_val : float Q-Measure value of the last calculation. parameters : dict Dictionary containing the parameters for QMeasure calculation. Parameters ---------- data_range : {1, 255, 65535}, default=255 Data range of the returned data in data loading. Is used for image loading when ``normalize`` is True. Passed to :py:func:`viqa.utils.load_data`. normalize : bool, default False If True, the input images are normalized to the ``data_range`` argument. **kwargs : optional Additional parameters for data loading. The keyword arguments are passed to :py:func:`viqa.utils.load_data`. Other Parameters ---------------- chromatic : bool, default False If True, the input images are expected to be RGB images. .. note:: Currently not supported. Notes ----- This metric will always be calculated with ``float32`` precision. References ---------- .. [1] Reiter, M., Weiß, D., Gusenbauer, C., Erler, M., Kuhn, C., Kasperl, S., & Kastner, J. (2014). Evaluation of a Histogram-based Image Quality Measure for X-ray computed Tomography. 5th Conference on Industrial Computed Tomography (iCT) 2014, 25-28 February 2014, Wels, Austria. e-Journal of Nondestructive Testing Vol. 19(6). https://www.ndt.net/?id=15715 """ def __init__(self, data_range=255, normalize=False, **kwargs) -> None: """Construct method.""" super().__init__(data_range=data_range, normalize=normalize, **kwargs) self._name = "Q-Measure"
[docs] def score(self, img, **kwargs): """Calculate the Q-Measure between two images. Parameters ---------- img : np.ndarray or Tensor or str or os.PathLike Image to calculate score of. **kwargs : optional Additional parameters for Q-Measure calculation. The keyword arguments are passed to :py:func:`viqa.nr_metrics.qmeasure_utils.qmeasurecalc.qmeasure`. Other Parameters ---------------- hist_bins : int, default=128 Number of bins for the histogram calculation. num_peaks : int, default=2 Number of peaks to consider in the histogram. Raises ------ ValueError If the input image is not a 3D volume. Warns ----- RuntimeWarning If the input image is a 2D RGB image. Q-Measure is only defined for 3D volumes. Returns ------- score_val : float Q-Measure value. """ img = self.load_images(img) if img.ndim < 3: raise ValueError("Q-Measure is only defined for 3D CT volumes.") elif img.shape[-1] == 3: warn( "Q-Measure is not defined for 2D images. You probably passed an " "RGB image. Make sure that img is a 3D volume.", RuntimeWarning, ) # Convert to float and get min and max values img = _to_float(img, np.float32) img_min = int(img.min()) img_max = int(img.max()) # Get additional parameters hist_bins = kwargs.pop("hist_bins", 128) num_peaks = kwargs.pop("num_peaks", 2) # Calculate score score_val = qmeasurecalc.qmeasure(img, img_min, img_max, hist_bins, num_peaks) self.score_val = score_val return score_val
[docs] def print_score(self, decimals=2): """Print the Q-Measure value of the last calculation. Parameters ---------- decimals : int, default=2 Number of decimal places to print the score value. Warns ----- RuntimeWarning If :py:attr:`score_val` is not available. """ if self.score_val is not None: print("Q-Measure: {}".format(np.round(self.score_val, decimals))) else: warn("No score value for Q-Measure. Run score() first.", RuntimeWarning)